Researchers from the Massachusetts Institute of Technology have come up with a device that can render digital 3D content physically and which could change the way we interact with PCs.
Called the inFORM, the device was unveiled this week on MIT's website by its creators, PhD students Sean Follmer and Daniel Leithinger, along with Professor Hiroshi Ishii of MIT's Tangible Media Group.
In a video, the inFORM was shown to be used for 3D modelling, viewing bar charts, maths education and controlling media (like the volume of a radio), among many other things.
The inFORM can be used for maths education. Photo: Tangible Media Group / MIT Media
Dubbed a "dynamic shape display", the device, unlike a hologram, can render 3D content physically, so that users can interact with digital information in a tangible way. It can also interact with the physical world around it by, for example, moving objects, such as a ball, on its table’s surface. Remote participants in a video conference can also be displayed physically, allowing for what the MIT researchers call "a strong sense of presence" and the ability to interact physically at a distance.
InFORM works by making use of a projector, an Xbox Kinect sensor, about 900 pins, linkages and actuators, and a computer. Each pin — which can move up and down about 100 millimetres — is about 9.535 millimetres x 9.535 millimetres and acts as a real-life pixel. The pins are spaced 3.175 millimetres apart and controlled by microcontrollers (small computers) that talk to each other on a very fast network. A projector is used to display colour on top of each pin and a Kinect is used for mid-air gestures and to track objects and touches on the table.
Speaking with Fairfax Media, Follmer said that as computing devices such as smartphones attempted to become Swiss army knives that could do everything, they began to lose a lot of "affordances" - physical features that allow you to better interact with digital information.
MIT PhD researchers Sean Follmer, right, and Daniel Leithinger, left, with Professor Hiroshi Ishii, centre.
He described how MIT's Tangible Media Group had been been working on trying to reverse this by making interacting with digital information more physical and more material for users.
"So [we've been moving away] from having physical buttons that are number pads that made it very easy for [us] to interact with a phone and to be able to dial... and, as we put more and more features into these [mobile] phones, it's [become] harder and harder to have these physical affordances for each of these different cases because a phone is now not only a telephone: it's a camera, a compass, a map, a web browser - all these different things," he said.
"And the only way to make all of this work is to have virtual representations. But that loses the tactile feeling. And what we want to do is bring that tactile feedback and tactile interaction back into digital interfaces and still allow for this flexibility and the multiplicity of types of interaction."
From another view: a person digitally manipulates a physical object at a remote location. Photo: Tangible Media Group / MIT Media
According to Follmer, the inFORM was built as a research platform to explore what the researchers thought the future of interacting with "shape-changing" interfaces would be.
"The traditional sort of interaction design and device design sort of assumes for a very static way of interacting and this [inFORM] device can change its physical form very quickly and that means that we need to come up with new ways that we interact with technology," Follmer said.
He suggested that thinking that humans would stick with keyboards and mouses as the mainstream input devices for computers was "something that we need to move away from".
The inFORM displaying a 3D model car. Photo: Tangible Media Group / MIT Media
Just as a sculptor used many tools, such as chisels and hacksaws, to make a sculpture, researchers needed to think of what different types of tools needed to be created for PC users to sculpt or interact with their computer.
"It's really important to have this multiplicity of ways that we interact with digital information and choosing sort of the best tool for the task at hand," Follmer said.
He said the inFORM paved the way for a world in which we could reconfigure physical objects in different ways and it was as easy to change physical material as it is pixels on a screen.
The inFORM was "quite expensive" to create in the lab, Follmer said, with each of the 900 actuators — the small motors controlling each pin — costing between $US20 and $US30.
"As time goes on the cost of these types of interfaces could decrease. [But] I don't think we necessarily see this as something everyone... will have, but maybe a derivative [of it]."
One thing the inFORM enabled was the ability to collaborate with other people at a distance. In one example, Follmer's team showed that it could have a 3D model on its table, in this case a car model, and a remote collaborator could physically [touch] the virtual model and the person who was co-located with the inFORM system could also touch it and interact with it directly.
Another thing inFORM enabled was 3D modelling and computer-aided design. Using a system like it, designers could "touch and see and understand their computer designs that they would [normally] have to 3D print [to see physically], which would take many hours," Follmer said.
"Here you can instantly render a 3D model in physical form and better understand it."
The inFORM also enabled, Follmer said, the exploration of geospatial information like maps, urban planning data and GIS data. Having this displayed physically would allow architects and urban planners to better understand models of buildings and sites in the physical world, he said.
0 comments :
Post a Comment